Office: S2 411

Phone: 607-777-4360

EMail: rmargine@binghamton.edu

**2001-2007** Ph.D. Physics, Pennsylvania State University

Minor in High Performance Computing

(advisor Prof. Vincent Crespi)

**1995-2001** B.S. and M.S. Physics, University of Bucharest

**2011-2012** Marie Curie Fellow, University of Oxford (Prof. Feliciano Giustino)

**2009-2010** Postdoctoral researcher, University of Oxford (Prof. David Pettifor)

**2007-2008** Postdoctoral researcher, University Claude Bernard Lyon (Prof. Xavier Blase)

**2011-2012** Marie Curie Intra-European Fellowship

**2007** Alumni Association Dissertation Award, Pennsylvania State University

I develop and apply ab initio computational methods for modeling of emerging materials with applications in energy transport and electronics. I am particularly interested in phonon mediated superconductors, thermoelectrics and carbon nanomaterials.

I have recently developed a computational tool within the EPW package that enables a fully anisotropic Migdal-Eliashberg treatment of the electron-phonon coupling via Wannier functions.

EPW is the short name for "Electron-phonon Wannier". EPW is an open-source F90/MPI code which calculates properties related to the electron-phonon interaction using Density-Functional Perturbation Theory and Maximally Localized Wannier Functions. The code was written by Feliciano Giustino and Jesse Noffsinger while at the University of California, Berkeley. Brad Malone (Harvard) and Cheol-Hwan Park (Seoul National University) contributed to the initial stages of this project.

EPW is currently developed and maintained by Roxana Margine, Binghamton University SUNY, and Harry Fisher and Feliciano Giustino, University of Oxford. EPW is based on the method introduced in F. Giustino et al, Phys. Rev. B 76, 165108 (2007). An extended description of the implementation has been published in J. Noffsinger et al, Comput. Phys. Comm. 181, 2140 (2010). The extension of EPW to include the anisotropic Midgal-Eliashberg theory is based on the method described in E. R. Margine et al, Phys. Rev. B 87, 024505 (2013).

EPW is developed under Subversion within the QEforge portal.

Under construction

16. Phil. Mag. 93, 3907(2013) Size versus electronic factors in transition metal carbides and TCP phase stability, D. G. Pettifor, B. Seiser, E. R. Margine, A. N. Kolmogorov, and R. Drautz.

15. Phys. Rev. B 87, 024505 (2013) Anisotropic Migdal-Eliashberg theory using Wannier functions, E. R. Margine, and F. Giustino.

14. Phys. Rev. Lett. 109, 075501 (2012), Pressure-driven evolution of the covalent network in CaB_{6}, A. N. Kolmogorov, S. Shah, E. R. Margine, A. K. Kleppe, and A. P. Jeaphcoat.

13. Science 337, 209 (2011), Dislocation-driven deformations in graphene, J. H. Warner, E. R. Margine, M. Mukai, A. W. Robertson, F. Giustino, and A. I. Kirkland.

12. Phys. Rev. B 84, 155120 (2011), Development of orthogonal tight-binding models for Ti-C and Ti-N systems,E. R. Margine, A. N. Kolmogorov, M. Reese, M. Mrovec, C. Elsässer, B. Meyer, R. Drautz, and D. G. Pettifor.

11. Appl. Phys. Lett. 98, 081901 (2011), Possible routes for synthesis of new boron-rich Fe-B and Fe_{1-x}Cr_{x}B_{4} compounds, A. F. Bialon, T. Hammerschmidt, R. Drautz, S. Shah, E. R. Margine, and A. N. Kolmogorov.

10. Phys. Rev. Lett. 105, 217003 (2010), New Superconducting and Semiconducting Fe-B Compounds Predicted with an Ab Initio Evolutionary Search, A. N. Kolmogorov, S. Shah, E. R. Margine, A. F. Bialon, T. Hammerschmidt, R. Drautz.

9. Phys. Status Solidi B 247, 2962 (2010), Conductance of functionalized nanotubes, graphene and nanowires: from ab initio to mesoscopic physics, X. Blase, C. Adessi, B. Biel, A. Lopez-Bezanilla, M.-V. Fernandez-Serra, E. R. Margine, F. Triozon, and S. Roche.

8. Appl. Phys. Lett. 94, 173103 (2009), Resonant spin-filtering in cobalt-decorated nanotubes, X. Blase and E. R. Margine.

7. Appl. Phys. Lett. 93, 192510 (2008), Ab initio study of electron-phonon coupling in boron-doped SiC, E. R. Margine and X. Blase.

6. Nano. Lett. 8, 3315 (2008), Thermal stability of graphene and carbon nanotubes functionalization, E. R. Margine, M.-L. Bocquet, and X. Blase.

5. Phys. Rev. Lett. 99, 196803 (2007), Reciprocal space constraints create real-space anomalies in the doping response of carbon nanotubes, E. R. Margine, P. E. Lammert, and V. H. Crespi.

4. Phys. Rev. B 76, 115436 (2007), Theory of genus reduction in alkali-induced graphitization of nanoporous carbon, E. R. Margine, A. N. Kolmogorov, D. Stojkovic, J. O. Sofo, and V. H. Crespi.

3. Phys. Rev. Lett. 96, 196803 (2006), Universal behavior of nearly free electron states in carbon nanotubes, E. R. Margine, and V. H. Crespi.

2. Science 311, 1583 (2006), Microstructured optical fibers as high-pressure microfluidic reactors, P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding

1. Phys. Rev. Lett. 90, 257403 (2003), Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors, G. Chen, S. Bandow, E. R. Margine, C. Nisoli, A. N. Kolmogorov, V. H. Crespi, R. Gupta, G. Sumanasekera, S. Iijima, and P. C. Eklund.