Transdisciplinary Areas of ExcellenceHealth Sciences

Placeholder

Health Sciences collaboration grant awards from prior years


The following four projects were awarded funds in July 2013, provided by the Binghamton University Road Map through the Provost's Office and the Division of Research with the goal of encouraging faculty to develop collaborative projects that stimulate the advancement of new ideas that can build Binghamton University's expertise toward a national center designation in the area of the health sciences. This competitive, peer-reviewed program is providing initial support for proposed long-term programs of collaborative research that have strong potential to attract external funding.

  • A New Strategy to Prevent Neoronal Glutamate Excitotoxicity

Glutamate transporters play essential roles in controlling the levels of the neuro-transmitter glutamate in the normally-functioning mammalian brain. When energy supply to neurons is interrupted, as encountered under ischemic conditions, glutamate transporters reverse their transport direction, releasing glutamate into the extracellular space instead of taking it up. This uncontrolled glutamate release can result in the widespread death of neurons. The long-term goal of the present collaborative project between the Werner and Grewer laboratories is to explore new strategies to prevent glutamate-induced excitotoxicity under conditions of energy deprivation, potentially leading to new avenues to combat stroke. Specifically, our aim is to develop cell- permeable, competitive inhibitors that selectively block glutamate release by reverse transport, without minimally affecting glutamate uptake under physiological conditions. Preliminary results based on a compound we have already synthesized show that glutamate release can be blocked in a model system. Conceptually and methodologically, the proposed research is innovative because we expect to identify novel methods and strategies for modulation of the glutamate release rate. The expected results could be ultimately used to extend existing, or devise new strategies, to reduce the destructive role of glutamate release through glutamate reverse transport in neurodegenerative disease and stroke.

Principal investigators/departments: Christof Grewer, professor of chemistry, and David Werner, assistant professor of psychology

  • Eating for 100 Trillion: The Gut Microbiome, Food Additives and Metabolic Disorders

Metabolic disorders are some of the most pressing health-related challenges. Approximately 35 percent of American adults and 17 percent of children are clinically obese, and obese individuals have an increased risk for Type 2 diabetes, hypertension and coronary heart disease. Obesity was estimated to have increased overall healthcare costs in the United States by $147 billion in 2008 alone. Recent studies have observed associations between the gut microbiome and metabolic disorders, and nanoparticles may be an environmental factor contributing to metabolic disorders through gut microbiome changes. The long-term goal of this work is to develop and utilize in vivo and in vitro systems to study ingested compound toxicity, genetic susceptibility, the role of the gut microbiome and the molecular mechanisms underlying genotype-by-environment interactions affecting metabolic disorders. This project will allow us to investigate how environmental nanoparticle exposure affects the gut microbiome and interacts with genetic variation in populations to influence disease susceptibility. Understanding these relationships, and the mechanisms that drive them, is critical for the development of prevention and intervention strategies at the policy, behavioral and biological levels; and this transdisciplinary work is relevant to the Health Sciences Steering Committee's Themes 1 and 4: Disease Susceptibility, Pathogenesis and Prevention and Individualized Therapeutics.

Principal investigators/departments: Gretchen Mahler, assistant professor of bioengineering, and Anthony Fiumera, associate professor of biological sciences

  • A Novel Mobile Hunan-Computer Interaction Approach Based on Wearable Eye-Controlled Glasses for Assisted Living and Health Care

Human computer interaction (HCI) has gained widespread attention because of the increasing demands to interact with computers in a human cognitive sense. Nonconventional HCIs show great potential for controlling computers and smart appliances, which is of particular significance to people with disabilities requiring hands-free alternatives. The movement of the eyes contains a rich source of information and has been widely used as a tool to investigate visual cognition. In this study, we propose a new HCI paradigm, taking advantage of the recent glass-style wearable computing technology. Specifically, we will embed miniaturized dry sensors placed inside the glass arms, which will record eye movements through the measurement of electrooculograph (EOG) signals, and enable users to control the glass or wirelessly tethered devices via intentional eye movements. The aim of the proposed work is to explore a synergistic solution of a truly wearable, eye-controlled mobile HCI device, which can be seamlessly extended to a hands-free assistive control system for people with disabilities or special needs. Proposed research activities include developing a user-friendly, glass-style EOG acquisition system, recognizing and distinguishing various types and levels of eye movements, and investigating a comprehensive eye-movement encoding language for eye-controlled HCI applications.

Principal investigators/departments: Zhanpeng Jin, assistant professor of electrical and computer engineering, and Sarah Laszlo, assistant professor of psychology

  • Development of a Nanodelivery System for Enhanced Treatment of Biofilm-Related Infections

A new collaborative project between Dr. Amber Doiron (Bioengineering Department) and Dr. Karin Sauer (Biological Sciences Department) was funded by the 2013 Health Sciences Transdisciplinary Area of Excellence. The project brings together Dr. Sauer's expertise in biofilms and Dr. Doiron's expertise in nanoparticle drug delivery formulations. Surface-associated bacterial communities known as biofilms pose significant problems in medicine due to their resistance to killing by antibiotics. Recent evidence suggests that microcolony formation, which is the first step of biofilms formed by Pseudomonas aeruginosa, requires a specific metabolite. Our primary objective is to develop a nanoparticle for co-delivery of agents targeting this metabolite and other aspects of the biolfilm and that may have clinical applications related to health concerns caused by biofilms. Findings from this research are anticipated to be translational with respect to treatment of biofilm infections in wounds and to enable a collaborative proposal to be submitted to the NIH or the DOD in the near future.

Principal investigators/deartments: Amber Doiron, assistant professor of bioengineering, and Karin Sauer, professor of biological sciences

Last Updated: 6/16/14