Materials – The Technology Barrier to Advanced Batteries
The LiFePO4 Story: What’s Next?

Fredrick Omenya, Zehua Chen, Bohua Wen, Natasha A. Chernova, Y. Shirley Meng, Aziz Abdellahi, Gerbrand Ceder, and M. Stanley Whittingham
Binghamton University, Brookhaven NL, UC San Diego and MIT

Types of Energy Storage

- **Pumped Hydro** (potential energy to electrical energy)
 - By far the largest by storage, gigawatts
 - Highly efficient, 70%
 - Limited new sites
- **Batteries** (chemical energy to electrical energy)
 - By far the most flexible and common
 - Portable and stationary
 - Milli Watts to Mega watts
 - Very fast switch on and off
 - Supercapacitors (surface charge rather than bulk chemical reaction)
- **Fly Wheels** (kinetic energy to electrical energy)
 - Very few, one near Albany for power smoothing
 - Hazardous – not likely for mobile applications

Types of Electric Vehicles

- **HEV - Hybrid Electric Vehicle** - no power from your home
 - Toyota Prius – 2 drive trains
 - BAE hybrid buses – all electric drive
- **Stop-start**
 - Engine stops when car stops – Mercedes
 - Most probable long-term solution – no range anxiety
- **PHEV - Plugin HEV** - charge them at night from your home off-peak
 - GM Volt - All-electric drive with Internal Combustion Engine to recharge, 40 miles
- **EV - All electric** - charge them when needed
 - Nissan Leaf – limited range – 80-100 mile range
 - Fleet vehicles – taxis and buses in China
Does BMW have the Answer?

- PHEV - Plugin HEV - charge them at night from your home off-peak $$$
 - Most probable long-term solution – no range anxiety
- EV - All electric - charge them when needed
 - BMW 3 – limited range – 80-100 mile range
 - Range-extender - $2500
 - Diesel engine + Generator

An Intercalation-based Lithium Battery Cell
1970s Technology

Structure Retention

xLi + TiS₂ gives LiₓTiS₂

Li in aluminum carbon (Sn or Si)

Redox Intercalation Cathodes for Lithium Ion Batteries
Dominate the Battery Storage Market

First Generation (1977):
Layered Sulphides.
TiS₂ - LiAl - Exxon
One Lithium to transition metal ratio - 480 Wh/kg (240 Ah/kg)

First Commercial Success (1991):
Layered Oxides.
LiCoO₂ - LiC₆ - SONY
0.5 Li to Co cycling - 480 Wh/kg

Today - 2013:
Mixed layered oxides and LiMn₂O₄ spinel
Li/NiMnCoAlO₂ – electronics, etc
LiFePO₄ & LiMnPO₄?
Power tools, HEV buses, utilities
NECCES goals:
• Develop a fundamental understanding of how key electrode reactions occur, and how they can be controlled.
• What are the intrinsic limitations to intercalation reactions?
 • Model compound – LiFePO_4
 • Major technical impediments to success (= should not work well)
 • But highest rate, large commercial applications

Characteristics of LiFePO_4 Electrochemistry
• Electrochemical behavior of ordered Olivine
 • Electronic insulator
 • Extrinsic conductor added, Fe_2P + C (>650°C)
 • Two-phase reaction: LiFePO_4 + FePO_4 – slow kinetics
 • Plateaus in cycling curves
 • One-dimensional tunnels = easily blocked
 • Inconsistent with actual behavior
 • Highest rates, 100% utilization, voltage gap

Phase Diagram of LiFePO_4-FePO_4
• High rate capability typical of single-phase reaction
 • Li_xFePO_4 for 0 ≤ x ≤ 1 (as in LixTiS_2)
 • Actual: Li_0.3FePO_4 phase to two phases to Li_1FePO_4 phase
 • (α and β 0-3%)
• High rate capability typical of single-phase reaction
 • Li$_x$FePO$_4$ for 0<x<1 (as in Li$_x$TiS$_2$)
 • Actual: Li$_{1-\beta}$FePO$_4$ phase to two phases to Li$_{1-\alpha}$FePO$_4$ (α and β 0-3%)
• Developed model
 • Metastable single phase (kinetic state)
 • Initial single phase expected to stay in reacting cell
 • Two-phase on relaxation (thermodynamic state)

NECCES developed model to explain behavior

How to Test the Single-Phase Model?
• Single phase model applicable to nano-size materials (< 100 nm)
 • Difficult to observe directly (all expts see equilibrium two-phases)
 • Can substitution of some of the Fe or Li give evidence? (adding defects)
 • Substituted aliovalent vanadium, V$^{3+}$, into the structure (theory says no)
 • 550°C single phase - solubility f(T)
 • 10% on Fe site
 • Charge compensation by Fe vacancies
 • 700°C + Li$_x$V$_3$(PO$_4$)$_2$ + Fe$_2$P
 • Micron-size materials
 • Probably nucleation/growth reaction mechanism
 • Not effective in batteries

Performance Enhanced by Vanadium Substitution, V$^{3+}$Fe
(Chem Mater. 23, 4733, 2011)
Vanadium Substitution increases Single-Phase Regions
(Chem. Mater. 25, 85, 2013)

• Vanadium has significant impact on phase diagram
 • Increases single phase regions to around 15% at each end
 • Lowers temperature for complete solid solution

Potential Gap reduced by Vanadium Substitution

Single-Phase Metastable Model predicts a potential gap

- Voltage gap
 - For pure LiFePO4
 - 23 mV
 - For LiFe0.85V0.1PO4
 - 8 mV
 - Thermodynamic solid solution
 - 0 mV

What’s Next: ED of LiFePO4 too low

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Size</th>
<th>Wh/L theoretical</th>
<th>Wh/L actual</th>
<th>%</th>
<th>Wh/kg theoretical</th>
<th>Wh/kg actual</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO4</td>
<td>54208</td>
<td>1980</td>
<td>292</td>
<td>14.8</td>
<td>587</td>
<td>156</td>
<td>28.6</td>
</tr>
<tr>
<td>LiFePO4</td>
<td>16620</td>
<td>1980</td>
<td>223</td>
<td>11.3</td>
<td>587</td>
<td>113</td>
<td>19.3</td>
</tr>
<tr>
<td>LiMgPO4</td>
<td>28500</td>
<td>2560</td>
<td>296</td>
<td>14.4</td>
<td>590</td>
<td>109</td>
<td>21.8</td>
</tr>
<tr>
<td>LiCoO2</td>
<td>18450</td>
<td>2950</td>
<td>578</td>
<td>19.3</td>
<td>1000</td>
<td>250</td>
<td>25.0</td>
</tr>
<tr>
<td>Si-LiMgO2</td>
<td>18450</td>
<td>2950</td>
<td>919</td>
<td>31.2</td>
<td>1000</td>
<td>252</td>
<td>23.2</td>
</tr>
<tr>
<td>Panasonic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What about other Phosphates?
Need 2e per Redox Center for > 700 Wh/kg

- VOPO₄ is one possibility,
- Pyrophosphates do not appear to be feasible for more than 1 Li (> 5 V)
- What other systems?
- Ceder study not encouraging.
 (Chemistry of Materials, 23, 3495, 2011)

VOPO₄ can be cycled over the two lithium despite significant reversible lattice changes

Zehua Chen

Conversion reactions: e.g. FeF₂
(Wang et al, JACS_133_18828_2011)

- **Goal**: Understand reaction mechanisms in conversion electrodes
 - What is the origin of large hysteresis?
 - Why are some systems reversible while others are not?
 - FeF₂: Interconnected Fe 2-3 nm particles allow reversibility
Still Opportunities to Improve Intercalation Batteries
Li-Ion will outperform Li-O₂ and Li-S volumetrically

- LiFePO₄ shows direction to go
 - Single-phase reaction mechanism – metastable or thermodynamic
 - 2 electron redox couples desirable in phosphates
 - E.g. VOPO₄ may achieve 350 Wh/kg

- Electrolyte Challenge – >4.8 V will allow 1 electron reaction in oxides
 - > 1 kWh/kg and 2.9 kWh/liter theoretical
 - > 350 Wh/kg and 1 kWh/liter actual cells
LiFePO₄ shows direction to go
- Single-phase reaction mechanism – metastable or thermodynamic
- 2 electron redox couples desirable in phosphates
 - E.g. VOPO₄ may achieve 350 Wh/kg

Electrolyte Challenge – >4.8 V will allow 1 electron reaction in oxides
- > 1 kWh/kg and 2.5 kWh/liter theoretical
- > 350 Wh/kg and 1 kWh/liter actual cells

Anode Challenge – make pure Li work
- Will significantly improve today’s intercalation cells
- Essential for beyond Li-ion
 - Li₂O₂ and Li/S cannot attain close to 1 kWh/liter in full cells
 - Li/S can exceed 350 Wh/kg, unlikely that Li₂O₂ will
Is Characterization and Theory up to the Challenge?

Russ Chianelli - Exxon
1976

[Image of graph and text]

May contain trade secrets or commercial or financial information that is proprietary or confidential and exempt from public disclosure.

[Exxon logo]