Search Target

Research Streams

Each Research Stream has a dedicated laboratory designed and equipped for its specific type of research and supervised by a team of three to five faculty members.

Weekly, each Research Stream meets to discuss its research; these are broad-ranging discussions led by faculty and instructors. These "team" meetings include lectures to provide the "big picture" and background, troubleshoot problems, and learn how to design experiments, analyze data and present results to others. FRI students learn how to talk about their research, collaborate and identify their next steps in research. Students finish the three-semester program with a public poster session displaying their results.

Microbial Biofilms in Human Health (Microbiology)
Biogeochemistry (Environmental Science)
Biomedical Chemistry (Biochemistry)
Community & Global Public Health (Big Data, Biostatistics, Environmental Health, Epidemiology)

Clean Energy (Chemistry, Materials Science, Physics)

Ecological Genetics
Environmental Visualization (Archaeology, Environmental Studies, Geology)
Image & Acoustic Signals (Computer Engineering & Science)
Molecular & Biomedical Anthropology

Neuroscience (Behavior, Biochemistry, Cell Biology)

Microbial Biofilms in Human Health (Microbiology)

Focus on biofilms that plague industry and hospitals.  Biofilms are communities of microorganisms living on surfaces and encased within a self-secreted, protective slime matrix. Such communities are the typical mode of bacterial growth in nature. Biofilms are of interest as they pose significant problems in industrial settings, costing the US billions of dollars each year in biofouling of equipment and infrastructure, resulting in losses in machinery life-span and efficiency, product quality and public health safety. Additionally, biofilms are the root cause of the vast majority of chronic infections and contamination of medical equipment and medical devices implanted in the body. Furthermore, biofilms are problematic because they exhibit a generalized tolerance to even the most aggressive conventional antimicrobial treatments, from disinfectants to antibiotics. Bacteria growing as biofilms can be up to 1,500 times more resistant to antimicrobial therapies than free-floating cells of the same species. Because of the high incidence of infections caused by biofilms and their increased resistance or tolerance, they pose a serious threat to human health and cause a large economic burden on the healthcare system. Students in the “Microbial Biofilms in Human Health” research stream investigate biofilm-specific resistance associated with human chronic infections with the goal of improving the outcome of anti-biofilm therapeutic methods. In carrying out this work, FRI students use the biofilm model organism Pseudomonas aeruginosa to perform a combination of microbiological, molecular, and biochemical techniques and methodologies to help develop novel methods and strategies for controlling biofilm infections. Throughout this process, students work with faculty mentors who specialize in biofilm research, and the students are involved in the design and execution of experiments and in the development of novel protocols. The research experience includes data collection, interpretation of results, and presentation of research findings. Experimental work is performed within the broader context of biofilm growth and behavior, and a focus on the scientific method and training in scientific literacy is central to the program. The team of faculty mentors includes Professors Karin Sauer, David G. Davies, Cláudia N. H. Marques and Jeffrey W. Schertzer from the Department of Biological Sciences and the Binghamton Biofilm Research Center.

Biogeochemistry (Environmental Science)

Focus on sustainability of earth systems from perspective of health of humans and ecosystems. We are particularly interested in microbes and their geochemical interactions with metals and other contaminants, resulting in their coupled short- and long-term impacts on physical, chemical and biological interactions. Modern and ancient oceans, the atmosphere, watersheds and wetlands provide the field sites for our studies.

This four-faculty team consists of Professors Tim Lowenstein, Joseph Graney and Thomas Kulp in Geological Sciences and Weixing Zhu in Biological Sciences. Over the last three years, this team has had research grants from National Science Foundation (NSF), US Geological Survey (USGS), Environmental Protection Agency (EPA), Electric Power Research Institute (EPRI), Colorado School of Mines, and the Colcom and Wallace Research Foundations, and has supported 30 students with 13 undergraduate students as co-authors on publications and presentations.

Career paths: Jobs expected to increase in these areas

Environmental Science and Environmental Studies

Biomedical Chemistry (Biochemistry)

Focus on molecular targets for treatment and delivery. The Biomedical Chemistry research stream will focus on studies of the structure and function of select biological macromolecules, in particular proteins, which are important for our understanding of patho-physiological processes, as well as for biomedical applications. Our goal is to identify molecular mechanisms of action of these proteins, and to develop new strategies and methodologies to study them, and potentially control their activity.

The team consists of four faculty members from Chemistry, Susan Bane, Brian Callahan, Christof Grewer and Wei Qiang. This team has had recent research grants from the National Institutes of health (NIGMS and NINDS), as well as the Department of Defense. Students working with these faculty members perform research on structural biology, NMR spectroscopy, membrane biology, biophysical chemistry, bio-organic chemistry, biochemistry, protein purification, and drug discovery. In the last three years, 41 undergraduate students have participated in research projects, with 9 undergraduate students as co-authors of peer-reviewed manuscripts/publications and conference abstracts.

Community & Global Public Health (Big Data, Biostatistics, Environmental Health, Epidemiology)

Focus on collecting and analyzing data to create better solutions to health problems and better inform public health policy . Students in this research stream will have an authentic research experience in biomedical social science research, specifically an introduction to epidemiology, biostatistics, bioinformatics, and public health. These topics will be covered in preparation for and within the context of research projects conducted in this research stream. Then by using public databases and techniques developed by researchers, data can be mined to examine patterns, test hypotheses and inform policy relating to: community health, global health, maternal and child health, obesity, chronic disease, population health, health policy, environmental health, occupational health, prevention research, or social determinants of health. In the first half of their spring semester, students will gain an understanding of the research problem and learn research techniques, then work the second half of the spring semester on application of that conceptual and technical knowledge unique to this research stream. That work will help students create a research proposal, which will be the basis of their research in the sophomore fall semester. The three-faculty team consists of Professors Gary James, Yvonne Johnston and Titilayo Okoror.  These faculty have received numerous research grants from the National Institutes of Health, state agencies and foundations. This research stream is especially appropriate for students interested in health-care careers, biomedical anthropology, and other majors that relate to societal health issues. The projected job market for public health employment is steadily increasing. It includes the subfields of environmental health, community health, behavioral health, health economics, public policy, insurance medicine, mental health, and occupational safety and health.

Ecological Genetics

This new research stream focuses on current issues in species interactions by using state-of-the-art techniques in genetics at biochemical, cellular and/or organismal levels. The faculty sponsoring this stream are: Jessica Hua (phenotypic plasticity, ecotoxicology, disease ecology, aquatic systems), Matthew Parker (ecological genetics and coevolution in natural communities), Thomas Powell (coevolution, ecological speciation, evolution and ecology of life history timing in insects), Kirsten Prior (community ecology and invasive species, antagonistic and mutualistic interactions), Karin Sauer (biofilm development and resistance), and James Sobel (evolutionary genetics, genomics of adaptation and speciation in plants).

Environmental Visualization  with Drones (Archaeology, Environmental Studies/Sciences, Geology)

Recent advances in high resolution electromagnetic sensors and unmanned aerial vehicles (aka UAVs, or drones) have led to a revolution in remote sensing capabilities. We believe these coupled technologies will define the 21st Century, allowing researchers to quickly and affordable collect massive data sets to address past, present, and future environmental concerns, resource management, planning, energy and mineral exploration, and agriculture to name a few. This research stream focuses on natural and archaeological resources by applying geospatial mapping technologies across landscapes and beneath the earth's surface. The research stream has been designed by a team of four professors: Carl Lipo (Departments of Geology and Anthropology, Director of Environmental Studies); Alex Nikulin and Jeffrey Pietras (Geological Sciences); and Matthew Sanger (Anthropology, Director of the Public Archaeology MA Program). It offers opportunities for students to do hands-on field research using geophysical instruments (e.g., magnetometry, active and passive source seismic, resistivity, ground penetrating radar), image analysis (e.g., aerial photography, satellite imagery, multispectral sensing), and active sensing (LiDAR) collected from UAVs (drones) and from land-based platforms. Students will learn interdisciplinary approaches to modern remote sensing and use these new techniques to map environments and explore subsurface features such as archaeological deposits, geological formations, natural environments, and geographical features. Students will collect, process, and integrate data from multiple instruments and conduct analyses using geophysical, image processing and geographic information systems software. Participating faculty have had grants from the National Science Foundation, National Geographic Society, and American Chemical Society and trained more than 100 undergraduates over the last three years with more than 20 undergraduate students as co-authors on publications and presentations.

The skills gained in this research stream are applicable to a diverse set of careers in the public and private sections, including by not limited to:

Environmental Consulting
Resource Management
Energy and Mineral Exploration
Precision Agriculture
Logistics and Supply Chain Engineering
GIS Engineer
Geotechnical Engineering

Career paths: Jobs expected to increase in these areas

Environmental Science and Environmental Studies
Remote Sensing

Image and Acoustic Signals Analysis (Computer Science & Computer Engineering)

Focus on multimedia, human-computer interaction, acoustics and computer vision. The Image and Acoustic Signals Analysis Research Stream is an interdisciplinary team in The Watson School of Engineering and Applied Science that will focus on research and development in multimedia, human computer interaction, acoustics and computer vision. The team will engage students in developing new digital forensic and biometrics techniques; designing novel immersive environments that will shape future trends in human-computer interaction; developing bio-acoustics, data compression and visual speech technology; and developing and testing the computer vision technology.

This five-faculty team consists of Professors Scott Craver,  (Electrical and Computer Engineering), Lijun Yin and Kenneth Chiu (Computer Science). Over the last three years, this team has had research grants from various federal agencies, and supported 31 students, with six undergraduate students as co-authors.

IASA video (3 minutes)

Molecular and Biomedical Anthropology (Genetics & Population Biology)

Focus on evolutionary medicine, in particular with reference to malaria, obesity, and Lyme disease. Projects include: evolutionary and population genetics and paleo-demography of Oceanic and Native American human populations; origins and domestication of camelids (such as camel, llama and alpaca); and population health and biomedical studies of Lyme and other tick-borne diseases, malaria, nutrition, obesity and metabolic diseases associated with cultural change and modernization. Students in this research stream are involved in all stages of the laboratory research that occur after biological sample acquisition. This includes DNA extraction, PCR amplification, gel electrophoresis, genotyping and DNA sequencing, as well as the analysis of genotypic and sequence data and their comparisons with phenotypic, historical, linguistic, geographic and other types of data to test hypotheses. The three-faculty team consists of Professors Ralph M. Garruto, J. Koji Lum, and D. Andrew Merriwether of the Departments of Anthropology and Biological Sciences. Over the last three years, this team has had research grants from the National Science Foundation, National Institutes of Health, National Geographic Society, Wenner-Gren Foundation for Anthropological Research, Government of Peru, Government of Trinidad, Director of Heritage for Nunavut. We have supported and trained 62 graduate and more than 100 undergraduate students, 54 of whom were co-authors on regional and national/international conference abstracts.

Biomedical anthropology (3 minute video)
Graduate program in Biomedical Anthropology
Five-year "fast-track" program for BA/BS plus MA/MS Biomedical Anthropology

Career paths: Jobs expected to increase in this area

Biomedical science

Neuroscience (Behavior, Biochemistry, Cell Biology)

Focus on neuro-degenerative diseases. With increasing life expectancy, the incidence of neurodegenerative disorders has exploded. Unfortunately, our understanding of the mechanisms that contribute to disorders of the brain like Alzheimer's and Parkinson's disease remains incomplete.

This faculty team, consisting of Professors Chris Bishop, Terry Deak and Lisa Savage, has decades of experience studying neurobiological mechanisms of disease in animal models and is perfectly situated to guide discovery-based research in this milieu. Over the last three years, this team has held research grants from several sources, including the National Institutes of Neurological Disorders and Stroke (NINDS), Alcohol Abuse and Alcoholism (NIAAA), Mental Health (NIMH) and the National Science Foundation (NSF). This group of faculty also maintains a strong tradition of student research, and in the past three years has supported 80 students (15 graduate students and 65 undergraduate students) and published more than 25 peer-reviewed research articles with undergraduate students as co-authors.

Smart & Clean Energy (Chemistry, Materials Science, Physics, Electrical Engineering)

Focus on harvesting and storing energy. The Chemistry-Physics-Materials Science-Engineering Research Stream is part of an integrated campus-wide research effort that focuses on smart energy. This interdisciplinary team of faculty consists of Professors Nikolay Dimitrov (Chemistry), Stan Whittingham (Materials Science & Engineering), Bruce White (Physics),  Manuel Smeu (Physics), and Tara Dhakal (Electrical Engineering), with current funding from NSF, the US Department of Energy (DOE), the U.S. Department of Defense (DOD) and industrial partners totaling over $2 million over three years. Students working with these faculty have current research projects on photovoltaic systems, thin film electronics, thermoelectric systems, lithium-ion batteries and super-capacitors. Over the last three years, nearly 30 undergraduate students have completed research projects working closely with teams of graduate students, post-doctoral fellows and research scientists.  >>For more information about the Smart Energy Research Stream.


What students are saying:

"From being in a lab for two days a week (sometimes more), I was able to see what it was like to work and study in a real laboratory setting. The nature of the class allowed for some feeling of freedom, yet I never felt as if I was going into an exercise completely blind, and the instructors always prepared me well. I also knew I could always ask questions whenever I was unsure about something and that the instructors would be helpful and receptive."

See more quotes

Last Updated: 11/8/19